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ABSTRACT

Spline functions, because of their highly desirable interpolating
and approximating characteristics, are used as a potential alterna-
tive to the conventional pulse approximation method in digital image
processing, For uniformly spaced knots, a class of spline functions
called B-splines has the useful properties of shift invariance, posi-
tiveness, and convolutional and local basis properties, These
properties are exploited in image processing for linear incoherent
imaging systems.

The problem of image degradation in a linear imaging system is
described by a superposition integral, For simulation of degrada-
tion and restoration by means of a digital computer, the continuous
imaging model must be discretized. Thus, a theoretical and experi-
mental study of quadrature formulae, particularly monospline and
bes. quadrature formulae in the sense of Sard, is presented, It is
shown that a good choice of degree for a monospline highly depends
on the frequency content of the integrand, and in most cases, a
cubic monospline generates less error than the pulse approximation
method and Newton-Cotes quadrature formulac,

In space-invariant imaging systems, the objcct and point-spread
function arc represented by RB-splines of degrees m and n,  Fxploi-

11




ting the convolutional property, the deterministic part of the blurred
image is a spline function of degree m4n+l, A minimum norm prin-
ciple leading to pseudo-inversion is used for the restoration of space-
variant degradations and underdetermined and overdetermined mod-
¢cls, Space-variant point-spread functions that describe astigmat-
ism and curvature-of-field are derived and coordinate transforma-
tions are applied to reduce the dimensionality, The singular-valuc-
decomposition technique is used for solution of the simplified equa-
tions,

For noisy blurred images, a controllable smoothing criteria
based on the locally variable statistics and minimization of the
sccond derivative is defined, and the corresponding filter, appli-
cable to both space-variant and space-invariant degradations, is
obtained, The parameters of the filter determine the local smooth-
ing window and overall extent of smoothing, and thus the trade-off
hetween resolution and smoothing is controllable in a spatially non-
stationary manner, Since the matrices of this filter arc banded cir-
culant or Tocplitz, efficient algorithms are used for matrix manipu-

lations,
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Chapter 1

INTRODUCTION

The objective of image restoration is the reconstruction of a
recorded image towards an ideal object by inversion of the degrading

phenomena, These phenomena include such imperfect imaging cir-

cumstances as defocus, motion blur, optical aberrations, and noise
no, 27, The pioneers of this field in the modern sense were
Marechal and his co-workers (37 who recognized in the 1950's the
potential of optical spatial filtering for restoring blurred photographs,
Their success stimulated others to study image restoration by *
optical compensation of the degradations, However, it was the
versatility of digital computers and the space program of the sixties
with its need for high quality imagery that provided the necessary
means and motivation for the development of the field, With digital

processing it is possible to overcome many limitations of optical

filtering and to explore new approaches which have no conceivable
optical counterparts,

Restoration techniques require some knowledge concerning the
degradation phenomena, and this knowledge may come from an
analytical modcl, statistical model, or other a priori information of b}
the imaging system, Thus considerable emphasis must be placed on

the sources and models of degradation. In gencral, an exact




degradation model is too complicated to be used, However, for many
cases of practical interest, a quite accurate model is given by a
lincar smoothing operation due to the optical imperfection fellowed
by the addition of noise I,4] .

The ecarlier restoration techniques, mostly optically oriented,
attempted to remove the degradation by inverse filtering 57, Using
the Fourier transform properties of lenses, the Fourier transform
of the degraded image is simply multiplied by the inverse of the
Fourier transform of the blurring function, This method is not without
limitations and shortcomings, First, in many practical cases such as
motion blur and defocusing, the Fourier transform of the blur function
has zeros at spatial frequencies within the range of interest, and
since the inverse of zcro is undefined, the method breaks down for
such cases, Second, for noisy images, this method enhances the
high frequency component of the noise, Various modifications have
been suggested to overcome these drawbacks, but all of them are
ad hoc and intuitive (31,05, (61,077, [8]. 1In spite of all the limita-
tions, inverse filtering can yicld reasonably good results where noise
is not the limiting degradation,

The minimum mecan-squarcd-error (MSE) criterion has been
usced as an objective criteria for restoration of noisy images,
Assuming the object and noise to be uncorrelated random processes

with a known blur function, Helstrom [9] has proposcd a filter for




image restoration based on minimum MSE principle, This filter is
the same as the classical Wiener filter which was developed in the
1940's in the field of signal processing, For an unkmown blur
function, Slepian n 0] has solved the same problem assuming the
blur function to be a random process, Utilizing the transform
properties of imaging systems, Pratt [117 has introduced generalized
Wiener filtering with improved computational efficiency, Habibi [12]
has shown that a lower triangular transformation yields an efficient
suboptimal Wiener filter. The Fourier transform properties of the
circulant matrices has been used to develop a computationally fast
algorithm for solving the Wiener filter [13] .

[he Wiener filter has limitations and shortcomings, The
minimum MSE principle, which is the objective criteria of a Wiener
filter, is suspect in image restoration, It is well known that the
human visual system demands a more accurate reproduction of
regions where the intensity changes rapidly than of the regions with
little change, and the sensitivity of the eye to a given error in intensity
depends strongly upon the intensity [47. The minimum MSF weights
errors equally regardless of the intensity and its gradient, More-
over, a Wiener filter requires extensive a priori information,
namely, the blur function and detailed knowledge of object and noise
covariance functions, Finally, since the Wiener filter is derived by

the Fouricer transform properties of space-invariant degradations and
3
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stationary assumptions of the object and noise, the filter is not
applicable to space-variant degrad-"i1ons and non-stationary objects

Constrained restoration has been introduced as an alternative to
overcome some short-comings of the Wicner filter, Hunt (147 has
proposed a constrained least square filter, in which by judicious
choice of some variables one can minimize higher order derivatives,
eye model effects, or even achieve the Wiener filter, Stockham and
Cole [lS.I have suggested a geometrical mean filter between the
inverse filter and Wiener filter, Utilizing linear equality and in-
equality constraints has led to constrained restoration techniques [161.
T'he non-negative nature of image intensity has been the leading factor
in some restoration techniques [17]. For unknown blur functions,
the concept of homomorphic systems [187 has been employed to
cstimate the point-spread function from the degraded image by taking
averages of image segments in the log-spectral domain [19] . A
detailed comparison of these restoration techniques is given by Hunt
(207,

For space-variant degradations, the problem of image restoration
is much more difficult because Fourier techniques cannot be used,
Generally, there are twice as many independent variables in a
spacec-variant system as in a space-invariant system, and this
incrcased dimensionality is the major analytical and computational

difficulty. A mecthod, analogous to Fourier techniques, has becen

)
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presented in terms of the degrading svstem cigenfunction tZli ,
however, it is not known how to find a complete set of ¢igenfunctions
or cven if they exist, Sawchuk ':22:,1 has shown that for certain space-
variant systems the degradation can be transformed to be space-
invariant by an appropriate sclection of coordinates,

I'he following is an outline of this dissertation and a summary
of the contributions,

In Chapter 2 background on the problem of image degradation and
restoration in a continuous model is discussed, The mathematical
representation of this model, inverse filtering and the Wiencr filter
are studied briefly,

Chapter 3 is devoted to discrete representations of the continuous
model for implementation on a digital computer, The pulse approxi-
mation method has been the simplest and the most common method in
digital image processing, however, the accuracy of this technique is
suspect in image discretization. It is shown that numerical analysis
techniques, particularly monospline quadrature formulae, lead to a
more accurate discrete model, The results are compared with
extreme cases, nam:ly, the pulse approximation method and the
Newton-C otes quadrature formulae, B-splines, because of their
desirable characteristics and the useful properties of shift invariance,
positiveness, and their convolutional and local basis propertics, arc

studied and suggested for discrete representation of the continuous

— e ey e
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model,

Che restoration of noiseless images are presented in Chapter 4,
For space-invariant imaging systems, the object and point-spread
function are represented by B-splines of degrees m and n,  The
degree of B-spline must be selected with respect to the continuity
and frequency content of the approximated function. Exploiting the
convolutional property, the blurred image is a B-spline of degree
mintl, It is shown that B-splinc produces a better quality restora-

tion than the conventional pulse approximation mcthod, Pscudo-

inversion based on the minimum norm principle is used for the
restoration of space-variant degradations, overdetermined models

and underdetermined models, With a linear incoherent system, the
space-variant point-spread functions that describe imaging in the
presence of astigmatism and curvature-of-field are derived and
coordinate transformations arc applied to reduce the dimensionality,
[he singular-value-decomposition techniques analogous to inverse
Fourier filtering are used for pseudo-inverse solution of the simplified
equations,

Image restoration by spline functions in the presence of noisc is
covered in Chapter 5, A controllable smoothing criteria based on the
locally variable statistics and minimization of the sccond derivative is
defined, and the corresponding filter, applicable to both spacec-

invariant and spacc-variant degradations, is obtained, The
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parameters of the filter determine the local smoothing window and
overall extent of smoothing, and thus the tradeoff between resolution
and smoothing is controllable in a spatially non-stationary manner,
Fhe interesting properties of this filter has made it capable of
restoring signal-dependent noisy images, and it has been successfully
applied for filtering images degraded by film-grain noise. Since the
matrices of this filter are banded, circulant or Toeplitz, efficient
algorithms arec used for matrix manipulations.

Finally, conclusions and recommendations for further research

are given in Chapter 6,




Chapter 2

IMAGE RESTORATION IN A CONTINUOUS MODFL

In this chapter, the problem of image degradation and restoration
in a continuous model is discussed, Section 2.1 presents a mathe-
matical model for a linecar imaging system, In sections 2,2 and 2,3
respectively, restoration techniques for noiseless and noisy images
arc discussced,

2.1 Degradation in a Linear Imaging System

Let g{x,y) be the image of an object f(°, ") which has been
degraded by the lincar operator h(x, y:®, T) such that

g(x,y) = [ hix,y;%, MECZ, MATdN+ nix,y) . (2.1)

The first source of degradation, represented by h(+), is known as the
impulse response or point spread function (PSF) of the imaging system,
Physically, h(.) is assumed to be the image of a point source of light
located at (7, M) in the object plane, The second source of degradation
is an additive noise represented by n(.) which can only be character-
ized in statistical terms, Figure 2-1 represents a linear imaging
system and the corresponding block diagram, Generally, the response
h(+) in the image space varies with the position (%, M) of the input
impulse and is called a space-variant point-spread function {(SVPSF)

in an optical context, If h(.)}is isoplanatic, i,e., the form of h(.)
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Figure 2-1, Linear imaging system model,




remains fixed in the image plane for all (¢, 7 ) positions,

then the system is said to be spatially invariant and h(-) is called a

space-invariant point-spread function (SIPSF). In this case, the

impulse response is a function of two variables and the dimensionality

of the system reduces considerably. The PSF h(x,y;*,T) can then be

written as h(x-°,y-T) and the superposition integral (2. 1) simplifies

to a convolution,

gix,y) = [[h(x-,y-mEE,Md"dT + n(x,y).
-t

(2.2)

Fhe mathematical represcentation given in (2,2) is general enough to

cover many situations that occur in coherent and incoherent optical

systems,

Some of the sources of degradation include: diffraction, motion

degradation; defocusing and atmospheric turbulence, Diffraction

in an optical imaging system is due to the limited aperture size

and

is an example of spatially invariant degradation, The blur function

for a system with a circular aperture and incoherent illumination is

given by [23]

J.(2m0) 2
1
hix,y) = |—F—

2 2
}¢ and ‘Tl is a Bessel function of the first kind,

where p = (x 4y

i

order one. Linear uniform motion degradation, defocusing and
atmospheric turbulence are other examples of space-invariant

degradations {47, {237. In some cases, such as defocusing and

(2.3)

10
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and atmospheric turbulence, the impulse response is separable, i,e.,
the function of two variables can be written as a product of two
functions, each with one variable,

The assumption of space-invariance is not valid for certain
degradations, Lens aberrations such as coma, astigmatism,
curvature-of-field, motion blur where objects are at different distances
from the camera and image plane tilt are examples of space-variant
systems [26.\ . By an appropriate selection of coordinates, some of
these degradations can be transformed into equivalent space-
invariant 247, [257 systems.

The assumption of additive noise is broad enough to encompass
different practical situations, Many of the noise sources (e.g.,
stray illumination, circuit noise, roundoff error) may be individually
modeled as additive noise, Nevertheless, the assumptions of lincarity
and additive noise arc subject to criticism becausc they are valid only
over a certain dynamic range. The problem is that g is not directly
available for processing. Instead, a nonlinear recording of g ona
photographic emulsion is usually the only available measurement, It
is possible to measurc the nonlinear function to recover g over a
larger dynamic range, but, any attempt at extending this range must
ultimately be frustrated by a drastic increase in the noise level 47,
Also, the effect of film grain noise is far from being additive,

Huang {277 has shown it could be modeled by a multiplicative process,
Ll

4




and more general signal-dependent models must be used to accurately
describe the process [287,

After specifying assumptions and limitations, the next step is to
clarify the necessary information., The model assumes that a
complete knowledge of the impulse response h is available, This
knowledge can be obtained analytically [23'! or from edges or points
in the image that are known to exist in the object [297. As far as z

the noise is concerned, knowledge of the second order statistical

properties is required, The noise is not necessarily white, but this
assumption is often made,

Fach restoration scheme given in the succeceding sections and ﬁ
chapters assumes some objective intuitively reasonable criteria of
quality, Inverse filtering, for instance, attempts perfect resolution
without regard to noise, while the Wiener filter minimizes the mean
square error without regard to resolution, Although it is known that

the human observer does not judge images according to mean square

error [30], it has been found that reasonable results canbe obtained by
its use,especially for low contrast images, Moreover, mean square

error leads to a very tractable mathematical structure, thec regres-

sion model, which has been considerably explored in mathematical
statistics,

2,2 Inverse Filtering . ! L

l'he idca of inversc filtering is very simple, [laking a Fourier

12




transform of both sides of the convolution expression (2,2) gives
G(u,v) = Hlu, v)F(u,v) + N(u, v) (2,4)

where u and v represent the x and y spatial frequencies and the
upper-case letters represent Fourier transforms of the functions
denoted by the corresponding lower-case letters, If the transfer
function H(u, v) does not vanish at any point (u, v), the inverse filter

R(u, v) is defined as
R(u,v) = 1/H(u,v) . (2.5)

The restored image in the Fourier domain is obtained by multiplying
both sides of (2.4) by R and taking an inverse Fourier transform,

Thus
f‘(u,v) = F(u,v) + N(u,v)/H(u,v) (2.6)
g -1
fix,y) = fix,y)+7 (N/H) (2.7)

where J-l represents the inverse Fourier transform, Marechal

et al, [3], Tsujiuchi [67, Harris (67, McGlamery (7], and Mueller
and Reynolds [8'] h: e applied this method with minor modifications.
These modifications aim at two short-comings of the inverse filter,
First, since H in most practical cases decreases rapidly for large
values of u and v, and the noise has a fairly flat spectral density
function, this filter amplifies the high frequency noise, Second, in

many cases H has zeros at spatial frequencies within the range of
13



interest, and since division by zero is meaningless, the method
breaks down., Therefore, a perfect restoration is impossible even in
the noiseless case, All the modifications suggested to overcome
these short-comings are intuitive and ad hoc. For example, Harris
[67 suggests that the right hand side of (2,5) should be multiplied by

a function H_(u, v) before taking the inverse Fourier transform, H

0 0

is chosen to be zero wherever the power spectral density of the signal
is dominated by noise and HO/H is chosen to be finite at the zeros of
H. With this method, the problem of infinities is removed, but the
restored image is a blurred version of fdcrivvd in (2, 6) through the

filter H , The requirements imposed on H_ are intuitively reason-

0 0

able. However, there are an infinite number of functions satisfying
these requirements and one of them must be chosen arbitrarily.

It has been shown that with the modifications given in [37, [57-187,
and in spite of the limitations and assumptions, inverse filtering can
yvield reasonably good restoration in many cases where noise is not
dominant,

2.3 Wiener Filtering

The basic idea of Wiener filtering is to minimize the mean
square error (MSE) between the original and restored images. MSE
is an objective criteria for which the optimum restoration can be
rigorously computed, The following is a “rief outline of the mathe-

matical derivation of the Wiener filter,
14



Assuming the object function f and the noise n be sample ‘unc-
tions of different random processes, the minimum MSE estimate of

fis f such that for cach (x,y) of the object plane the error e give: by
A2
e = Ef(f-H71 (2, 8)

is minimized, where E denotes expectation over the processes f and

n. It can be proven that
f = E(flg) (2,9)

in general,

Although (2.9) appears very simple, the computation of the
conditional expectation is very difficult for arbitrary processes {
and n, The problem becomes much simpler if we assume these
processes to be stationary, independent,zero-mean Gaussian
processes, In this case, it can be shown that the optimum nonlinear
or linear estimate of (2,9) can be obtained by linear spatially in-
variant filtering of g. This minimization filter is easier to des-

cribe in the spatial frequency domain, and can be shown to be [41
R = H*/(HH* + @ /o) (2.10)

where * denotes complex conjugate and @ and ® are power spectral
densities of the processes f and n, With . 0, the Wiener filter
becomes the inverse filter and when H = 0, R = 0 (unlike R = ® with

the inverse filter). In order to determine R, both H and the noise-to-

15
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signal ratio .‘cn/wf must be known, In most cases r;n/t‘sf is assumed
to be constant over the frequency range of interest,

For a better fidelity criterion than MSE, various modifications to
the Wiener filter have been proposed. Hunt 147 has proposed a
constrained least-square filter and Stockham and Cole (157 have
suggested a filter which is the geometrical mean between the inverse

filter and the Wiener filter, These filters have been implemented

with very successful results,

16




Chapter 3

DISCRE TIZATION OF THE CONTINUOUS MODEL

In the processing of images by digital computer, the continuous
model of Eq. (2,1) must be discretized, In digital image processing,
the information is necessarily finite and discrete in both amplitude
and spatial position, Therefore, the continuous image field, and in
most cases the impulse response, must be transformed into arrays
of numbhers., Genevally, this transformation produces some error,
i.e., the inverse transform of these arrays of numbers is not
exactly the original image field,

Representing the continuous function by an array of samples,
known as the pulse approximation method,is the simplest and the most
common technique in image discretization, However, the accuracy
of this technique is suspect in digital image modeling, Using
numerical analysis methods, such as quadrature formulae, lecads
to a morc accurate model, Spline functions, because of their highly
desirable interpolating and approximating characteristics, are
suggested as a potential alternative to the conventional pulse approxi-
mation mcthod,

In this chapter, the problems of image sampling and quadrature
formulac arc analyzed, It is shown that splinc functions are superior

to both pulse approximation techniques and polynomials in discrete




representation of a continuous function and numerical solution of
integral equations, Some experimental results are given in the last
section of this chapter,

3.1 Pulse Approximation Method

T'he idca of the pulse approximation method is to represent a
function f(x) by an array of its sampled values taken on a countable set
of points on the x axis., Clearly, if the sample points are close
enough, the sampled data are an accurate representation of the
original picture. Thus the function f can be reconstructed with suf-
ficient accuracy by simple interpolation. Assuming Ax to be the
distance between two subsequent points in a uniform sampling, the
sampled function fs(x) is obtained by multiplying the original function
by summation of § functions as expressed by

L]
fs(x) = i;:m f(iAx)8(x-1Ax) . 3.1
Faking a Fourier transform of (3.1), the spectrum of the sampled
function is given by 1237
3 i
Fs(u) = i;,, F(u-E(‘) (3.2)
where F is the Fourier transform of f and u is spatial frequency,
Equation (3.2) indicates that the spectrum of the original function is
infinitely repeated with a distance of A_lx- . Assuming the function f

to be bandlimited, its spectrum F is non-zero over only a finite

Ly




intervel R in the frequency domain, If Ax is sufficiently small, then
the separation ;)—1}; is large enough to assure that adjacent spectra do
not overlap, If ZBx represents the width of the rectangle that

completely encloses the interval R, then non-overlapping is assured

if

Ax =< (3.3)

2B ‘
x

Physically, this mecans that the function f must be sampled at a rate
at least twice its highest frequency component or one-half the period
of the finest detail within the function., If equality holds in Iq. (3, 3),
the function is said to be sampled at its Nyquist rate, If Ax is
smaller or larger than this threshold, the function is oversampled or
undersampled., With condition (3. 3) satisfied, the exact reconstruc-
tion of the original function can be achieved by filtering the sampled
data with an appropriate filter, for example a filter with a rectangular
transfer function of width 2Bx' In the spatial domain, the reconstruc-
tion operation in the spatial domain is
® . s
fx) = D . )sinc[2B_(x-5=— ] (3.4)

ZB

i=-~® X b'<
for a rectangular filter, FEquation (3.4), known as the Whittaker-
Shannon sampling theorem, indicates that the function is reconstructed
exactly by an infinite sum of weighted sinc functions injected at each
sample point,
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3.2 Quadrature Formulae

The problem of image degradation, as stated in Eq, (2,1), is
represented by an integral equation, In practical situations, the
limits on this definite 'ntegral equation are not infinite, First, the
degradation function h usually vanishes (or almost vanishes) beyond
some point, and consequently, h is non-zero over a finite interval,
Second, only a finite size of the object is of particular interest for
restoration, With these considerations, the one-dimensional

version of £q, (2.1) is a definite integral

g(x) = j’b h(x, ©)(7)d? (3.5)
a
over a finite interval [a, b7,

I'o implement this continuous integral by a digital computer, a
numerical technique, called a quadrature formulae (q.f,) must be
employed., A q.f, is an approximation to a definite integral by a
linear combination of values of the integrand, and perhaps also of
some of its derivatives, at certain points of the interval of integra-
tion called the nodes of the q.f. [311, A discrete version

glx) = ; e shlx, ) (3.6)
of Eq, (3.5) can be obtained by applying a q.f, Using vector space

notation, the above equation simplifies to

g = HE (3.7
20
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where ITis an M ¥ N matrix with elements h . - ¢ hix, ~ ).
— i3 ij v

Assuming the coefficients Cii =1 is equivalent to the pulse approxima-
tion method, For a given number of samples, a good choice of q.f,
can result in an accurate vector space model, Mcrcover, the quadra-
ture cocfficients can affect the stability of the model and decrease

the condition number,

The general form of a q,f,, when the derivatives are not avail-

able, is given by

b
[ fxydx =
a i=1

™

Cif(x_l)+ Rf (3.8)

where < and x, are cocfficients and nodes of the q,f., respuctively,
T'he term Rf is a functional which for any given function f{.) cquals
the difference between the exact value of the integral and its approxi-
mation., For a given q.f., Rf depends on the integrand and may vanish
for some specific class of functions, Therefore, the objective is to
minimizc the upper bound of Rf as well as to enlarge the class of
functions which result in zero value for Rf. If the nodes of the q.f,
are pre-assigned, the only available parameters to be treated are
the coefficients, Examples of this type are Newton-Cotes and best
q.f. in the sense of Sard (317, If the nodes are free, the best
location of the nodes, in a certain sense, can be determined, and the
q.f. is called optimal, Examples of the optimal type are Gauss-

Legendre and optimal q,f, in the scnse of Sard, Since in most cases,
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particularly in image processing, the location of the nodes arc pre-
assigned, only fixed node q.f, arc considered here, Newton-Cotes
qQ.f. is briefly studied in this section, best g,f, in the sensc of Sard
in section 3,5 and the experimental results are compared in scction
’ 3. 6.

The basic idea of Newton-Cotes q,.f, is to interpolate the
sampled data by Lagrange method and then integrate it [327, Clearly

the remainder of the integral has the property that RF = 0 if ferrn L

where T'.n 1 is the entire class of polynomials of degree less than or

equal to n-1, This property may be used to determine the coeffi-

cients Croeaes Cn' A linear system of equations can be obtained by
-1

assuming Rf = 0 when f(x) = 1, x,... ,xn in equation (3. 8). The

coefficients are the solution of this linear system of equations,

3.3 Spline Functions

Spline functions arec a class of piecewise polynomial functions
satisfying continuity properties only slightly lcss strigent than those
of polynomials, and thus they are a natural generalization of
polynomials [337. Given a strictly increasing sequence of rcal

numbers x

prXgreeesX @ spline function S(x) of degree m with the

knots x,,x

11 Xpr e X is a function having the following two properties:

1) In each interval (xi,le), S(x) is given by some polynomial

of degree m or less,

2) S(x) and its derivatives of order 1,2,,,.,,m-1 are
22




continuous cverywhere,
When m = 0, Condition 2 is not operative, and a spline function of
degree zero is a step function, A spline function of degrce onc is a
polygon,
In general, the polynomials representing S(x) in adjacent inter-

vals (x,,x. .)and (x ) are different, although this is not a
i’ i+l +2

i1
requirement, S(x) might be represented by a single polynomial on

the entire real line. In other words, all the polynomials of degree

m or less are included in the class of spline functions satisfying the
above properties, Spline functions can equally be defined as the
following:

1)  For m >0, a spline function of degree m is a function in the

-1
class of m-1 times differentiable functions (Cm ) whose
th L . .
m derivative is a step function,
. . . th . .

2) A spline function of degree m is any m order indefinite

integral of a step function,

Polynomials,because of their simple mathematical properties,
have been widely used for interpolation and approximation, However,
a polynomial fitted to a fairly large number of data points has numer-
ous and severe undulations, Therc is now considerable evidence that
spline functions in many situations are more adaptable approximating

functions than polynomials with a comparable number of parameters,

Moreover, they have beenshowntobe the solution of some optimization
23




problems 347,357, 367,
['he basis for the class of spline functions of degree m having

knots X 1 Xy, oo .,xm is given by

{1,X,...,xm, (X-% )in

m m
- - } 3.
1 ,(xx2)+,...,(x xn)+ {3.9)

where

0 if x sx
m
(x-x.) = . (3.10)
* m
(x-x.) if x>x
1 1
Using this basis for interpolation and approximation turns out to be
unstable in practice, since the matrix of the system is very badly
conditioned unless m and n are both small 37]. The numerical
instability is related to the mathematical properties of the truncated
power functions., This difficulty can be overcome by adopting another
basis for the class of spline functions. The most desirable basis
consists of splines with finite support containing a minimum number
of knots, This basis, called B-splines, has minimal support for a
given degree and has been studied by Curry and Schoenberg (}78.\ .

A B-spline Mi(x) of degree m with knots x , x
1

410 Miymel 18
given by
i+m+1 (x-x&):n
M. (x) = (m+l) ; T (3.11)
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where

i
.
&

m4] i+tm+l
wixy = 1 | | (xl-xj). (3.12)
j=i

j#e

T Ly

If the knots are uniformly spaced, B-splines have the following
properties:

1) The functions are shift-invariant, i.e.

{ = -
Mi x) Mi_k(x xk)

2) The functions are strictly positive,

3)  The convolution of two B-splines of degrees m and n

yields another B-spline of degree m+n+l,

4) The functions have limited support and thus are a local

basis.

These interesting properties can be fully exploited in image
processing. Property 1 results in circulant matrices which can be
inverted by a Fourier transform. TIhe second property is useful
because image intensity is always non-negative. Property 3 is
analogous to convolution in space-invariant degradation which will be
the subjeci of section 4.1, Finally, the fourth property produces
banded matrices which are very efficieni in computation,

Figures 3-1 and 3-2 arc plots of B-splines of degrees 1,2 and 3

. centered at the origin of the coordinate system. A B-spline of degree

zero is a reciangle function and a B -spline of degree one is a riangle
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(a) B-spline of degree 0 i

\j L] T
1.0 <
[~ n
0.5 = -4

-2 -1 0 1 2
(b) B-spline of degree 1

Figure 3-1, B-splines of degrees 0 and 1,




1.0 | :

A . "

.y -1 0 1 2

(a) B-spline of degree 2

-2 -1 0 1 2
{(b) B-spline of degree 3 (cubic B-spline)

Figure 3-2, B-splines of degrece 2 and 3,
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function. Using Eqs. (3.11}and /3.12), B -splines of degreces 2 and 3

can be ecxpressed as

2 2 2 2
_ (x+1.5);  (x+.5); | (x-.5)4 (x=1.5),
BZ(X) = 3 [ 3 - > + > - 3 (3.13)

23 6 4 6 24

3 3 3 3 3
2 1 -1 2
B = 4[(x+ ;o Dy oy (x-Dp(x-2)) ] 514,

Spline functions of degree three, called cubic splines, in many

situations have more desirable properties than other splines, and

therefore they are widely used for approximation and interpolation. !

3.4 Error Analysis

Interpolation and approximation by spline functions is generally
not without error, For a given function, the error depends on the
function, ithe degree of spline, and the number of placement of the
knots. An analysis of the error is helpful in choosing the proper
spline function, The following is a brief error analysis,

Let PC™P(a, b) be the set of all real- valued functions f(x) such
that:

1)  f(x) is m-1 times continuously differentiable on the open

interval (a,b].
2) T'here exist a sequence of knots a = X <x1 <x2 <...<x <

n

X = b such that on cach open inierval (x ,x, ), 0 <i <n,
n+l i’ il

fis m times continuously diffcrentiable,

th .
3 The Lp-norm of m derivative is finite, i.e.,
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X.
n i+l o 1/p
1D’f(x)¥odx> <w®. (3.15)
i=0 x,

i
When 0 = ®, the third requirement becomes

Dl = max sup ID™Mfix) ! <o, (3.16)

0sisn Xe(x.,x. )
i’ i+l

With the above definitions, Shultz [397 has derived error bounds

for different functions interpolated by cubic splines. Assuming f(x)

to be the original function and S(x) to corresponding cubic s»line

function, the error bound is given as follows.
2,2
If fePC ' (a,b), then

L i A A
If-sll, s 2 2w%Ip fll, . (3.17a)

2,=
If f£ecPC (a,b) then

IHf-sli S%thID fll_. (3.17b)
2
If fePC4' (a,b), then
II£-sll s4n'4h4i|o4f|l ; (3.17¢)
2 "2
1 fePC? %a,b), then

Il £- s]L < 3’3’? n?p* fll_. (3.17d)

Inequalities (3.17a-d) indicate that the error bound is a mono-
tonic increasing function of sampling interval h and the norm of the
m-th derivative of the original function. Therefore, one way to

reduce the error is to sample the function at a higher rate. When
29
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the function f belongs to more than one of the above categories, the
error bound is the smallest one. If f is a polynomial of degree less

than or equal to 3, then

nod .4
'Df. = "D = 0,
2 ™
therefore
He_gl = fgslt =
'f-sh, fsl“° 0
and
f(x) = S(x)

which means cubic splines exactly interpolate the polynomials of
degree 3. As another example, let f(x) be a sine function with

frequency u, then

2
Df = -(2mu) sin 2mux
and
4 4
D f = (2ru) sin 2fux ,
Therefore
2
!'sz!' = (2mu)
-
and

4 4
"Dl (2mru) ",
®
Substituting the above norms in /3.17b, d)

le-shl_ < % (Zﬂhu)z

and
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5 4
.- il S - 2"
{ b.“ EY (2vhu)

The error bound is the minimum of the above two limits, For a
given crror bound, h is proportional to the inverse of u which is
similar to the sampling theory studied in section 3.1,

3.5 Monospline and Best Quadrature Formulac in the Sense of Sard

Monosplines are a class of functions defined as [31]

<M
K(x) = - - S (x) (3, 18)
m! m-1,n
‘
where Sm 1 n(x) is a spline function of degree m-1 with n pre-

’

assigned knots a <xl <x, <,.,.<x <band n>m given by
n

2

c (x-x)

m-1

2] J 5 1 1 4

- S S U S 3,10

Sm-l, n!x) 2% :xjx + Zl Y . { )
3= 1=

K(x) which consists of a polynomial of degrce m and a spline of

degree m-1lis called a monospline of degree m with n nodes., Using

(m)

K {x) as a kernel

b b b
‘l' f(x)K(m)(x)dx I f(x)dx - {' cif(X)b(x—xi)dx
a a

i=l "a

o

Jb f(x)dx -

a i=1

5

c f(x ). (3.20)
i

Integrating the left hand side of (3.20) m times (by parts) gives

b im) b i melpy P
J'f(x)x dx = ) -V eok™ T Vi |
a =0 2
m b (m)
1 .21
+(-1) Ia f (x)K(x)dx . (3 ‘21

S R—




Assuming

k@) = k%20 for j=0,1,...,m-1 (3.22)

and substituting (3,21) in (3,20) gives
b n m b (m)
I f(x)dx = Z;cif(xi) +(-1) I f (x)K(x)dx. (3.23)
a i= a

Therefore the remainder of the integral, or the error of q.f., is

given by

b )
Rf = (-l)mJ' f(m)(x)K(x)dx (3.24)
a

The upper bound of Rf can be expressed as
b (m) (m)
IRel= [ ™ eokeal = k1™ (3.25)
a

where ||- ||2 denotes L, -norm of the function. If Rf = 0 when fisa
polynomial of degree less than or equal to m 1 and K(x) has the least

square deviation (minimum norm) among all kernels of the form

{3,18), then the q.f, is called the best in the sense of Sard, For a
given function f, the minimum norm of K generates the minimum
upper bound of Rf, Assumption (3,22) which leads to Eq, (3,23)
satisfies the first requirement, Schoenberg [407,[417 has shown

that there exists a unique monospline

Zm

X
H(x) - (Z_rn—)‘ - SZm—l,n(X) (3- 26)

of degree Zm in which the kernel K(x) of Sard's best q.f., in terms of
32




H(x), is given by

Kix) = H™x) . (3.27)

H(x) must satisfy the following conditions

H(xi) = 0 i=1,2,,..,n (3.28a)
0™ e =0 j=0.1,...,m-1 (3.28b)
™y 2o i=0,1,...,m-1 (3.28¢)

o2
The value J of minimum derivation | K’ in terms of H(x), is

20
determined by the relation
b b
J =J Dﬂx);dx =(-1f“f Hix)dx . (3,29)
a a
Assuming a =-1, b =1 (this assumption can always be made by
the normalizing S = %{;3 ), and applying condition (3,28b), II{x) can
be written as
Zm-1
2m omal ¢ (x-x )"
H(x) etl) a,x - —J—l“——-—-. (3.30)
(2m)! i (2m-1)" *

j=0 j=1
Conditions (3.28a) and (3.28c) generatec a system of nitn linear

cquations with m+n unknowns of the form

Zm 2m-1
(xiH) m-1 ; n c_(x__x_)‘
- . S J 11 = i=1
2 z—(:) (Ijxi g Zm-1)' 0 i=1,2,...,n
J= J= (3, 31a)
i n
Z (l-x) -0 i=1,...,m . (3. 1
i3




The coefficients Ci and a. and the Lz-norm of K can be obtained
. J
by solving the above lincar system of equations. If m = 1, which

corresponds to the pulse approximation method, the systemn can

casily be solved, In this case the cquations are given by

2
(x. +1) n
L - - E C_(X.-X‘) =0 i:l,Z,,,.'n ’3,32&)

=

The solution to the above equation is obtained as

2
(l+xl\ ‘
a, = —5— i3, 33a) *
2+xl%x2 '
('l = —2-——~ 13.33L) 1
X, l‘x'll
c. = _J_LZ——L— ] :Z. 1,,.,'n—1 (3.33¢)
]
2-x X
¢ = r_‘z—i ) (3, 33d) !

When the sample points are cquidistant, the location of nodes and

cocfficients arc derived as follows

2j-1

x, = -1 42 i=1,2,...,n (3, 34a)

i n ‘ “
2

c. = — i=1,2,...,n 13, 34h)

) n ' R
l o

0. - — (3. 34¢)
> .

a 2n ’

substituting (3, 34a-c) in (3, 30) produces
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2
1 1 2
H(x) = (xt1) - - - (x+x.) . (3.35)
n ]+

2 an j:l

The value J of mini mum deviation can be obtained as
1

1
2
J. (K{x)) dx = (1-)mj Hix)dx
-1 -1

(=
i

1 2 1 n 1
x+1) 1 2
~I i——z—-— dx+—7j‘ dx+'r'l‘z I (x-x.)+dx
-1 2n" “-1 j=1v-1 )
1 1 & ;
= -§+-—+-— (2+L-§J—)2
6 2 n 4 n n
n j=
B 2
= = .
3n

Substituting the norm of K(x) in (3.25), the upper bound of the error
is

Rf s % \/?Hf‘\\ (3.36)
Cherefore, as was expected, the upper bound of error is inversely
proportional to the number of sample points and approaches zero as
n increases., Morcover, Rf = 0 for constant functions f(x) = ¢

regardless of the number of sample points.,

3,6 Experimental Results

Fo show the improvements that can be made by using mono-
splincs, this section is devoted to applying Sard's best g.f. to a
variety of functions and comparing the results with pulse approxima-

tion method and Newton-Cotes q, f,
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In applying Sard's best q.f., one is faced with the task of
selecting the parameter m, For a given number of sample points,
the deviation of K(x) decreases as m increases. Figure 3-3 is an
illustration of this property for 8 uniformly spaced nodes, There-
fore, one may assume m to be the highest order where f(m) is
continuous, On the other hand, as m increases, different problems
will arise, First,the systemof equations (3,31a,b) tends to become
unstable for large m, Second, in some cases, the norm of the n-th
derivative of the integrand increases rapidly as m grows, and a
smaller choice of m would result in a smaller ¢rror, [o study the
effects of different values of m on the error and also to compare
3ard's method to the Newton-Cotes and pulse approximation methods,
several experiments have been performed. Figurc 3-4a demonstrates
the error as a function of frequency for a sinc function, Case m =1
coincides with the pulse approximation method, and m = 8 is equi-
valent to the Newton-Cotes q.f. Figure 3-4b is a plot of the theoreti-
cal error bound for a sine function, In Figure 3-5a the integrand is
a polynomial of degrec 8, Variable j is a measure of how fast the
polynomial oscillates in the interval of intcgration; j is almost cqual
to the number of roots in the interval (-1, 1) minus onc, In other
words, the larger j becomes, the harder it is to approximate the
function since it is subject to more fluctuation, [his roughly

corrcesponds Lo the frequency in Fig, 3-4, Figure 3-5b shows the
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(a)

log of Lo-norm of K(x)
]
b

Uniform spacing of 8 nodes

(b) Lz-norm of K(x) vs. degree of monospline

Figure 3-3,

Deviation of the kernel for 8 uniform nodes,
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Figure 3-4. Quadrature error and error bound for sine functions. {
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Figure 3-5,

Quadrature error for polynomials.
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crror for palynomials of different degrees. In this plot all the roots
are between -1 and 1.

Both theory and experience indicate that the choice of m greatly
depends on the frequency content of the integrand {, For the class of
rapidly varving functions, a smaller m is advised, but for the class
of slowly varying functions, large values of m give better results,
Since it is assumed that f is sampled faster or equal to the Nyquist
rate, the curves of Fig, 3-4 arc not studied for frequencices above
two cycles., Figures 3-4 and 3-5 show that the curves cross each
other and that a tradeoff exists between the frequency content of the
integrand and dcgree of monospline, Considering this fact and
taking into account the sct of examples, the cubic monospline produces
less crror overall and thus the optimal value for m is three. Of
course, for other cases where the function f is highly oversampled,
large values of m may be recommended, while on the other hand,
when the function is sampled far below the Nyouist rate, the pulse
approximation is preferred to the other techniques.

In section 4,4, Sard's best q,f, has been used in the simulation
of images degraded by astigmatism and curvature of the field. This
q.f. results in a more accurate model with the reduction of simula-
tion artifacts, Moreover, this technique has decrcased the condition

number of the blur matrix and consequently produced a more stable

model {247, [427 .
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Chapter 4

RESTORATION OF NOISELESS IMAGES

The restoration of noise-free images is presented in this
chapter, The convolutional property of B-splines is used for the
restoration of space-invariant degradations. It is shown that repre-
senting the object and point-spread function by B-splines leads to a
more accurate reconstruction of the original object than the conven-
tional method,

The singularity of most imaging systems due to the irreversible
loss of original object information is a major problem in image
restoration. A minimum norm principle leading to pscudo-inversion
is used to overcome this difficulty. This technique is applicable to
space-variant degradations, underdetermined models and over-
d.etermined models, The space-variant point-spread functions that
describe imaging in the presence of astigmatism and curvature of
field are derived and coordinate transformations are applied to reduce
the dimensionality, The singular-valuc-decomposition is used for
solution of the simplified equations.

4,1 Application of B-splines to fpacec-Invariant Degradations

As discussed in Chapter 2, the deterministic part of a degraded
image in a space-invariant imaging system is described by a

convolution integral. Using B-splines as a basis in uniform
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sampling, the object f(x) and point-spread function hix) can be

represented in the forms

f(x) = Z £B_(x-x) i4,1)
7

h(x) = Z thn(x-xj) (4,2)
j

where Bm(x) and Bn(x) are B-splines of degrees m and n centcred at
the origin, and fi and h. are interpolation coefficients, Substituting

{4.1,2) in the convolution integral, the image is

.
g(x) J h(x-2)(5)d*

1

ZZf_h,B (x-x.)*B_(x-x.) . (4.3)
; i3] m 1 n ]

Exploiting the convolutional property of B-splines

B (x-x):B (x-x)}) = B (X-%x, -x.) (4,4)
m i n j m-'n+l i

and representing g(x) by a B-spline of degree m+n+l, Eq, (4,3) can

be written in the form

Zk: g.B | (x-kax) :ZZ B g (XA )
T3

where Ax is the sampling interval. Equations (4, 3) and (4, 5) show
that the B-spline, which is interpola.ing the deterministic part of

the blurred image, must be of higher degree than the B-splines
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interpolating the object and point-spread function, In other words,
since the blurred image is always smoother than the object, a higher
degree spline can follow the image function better than one approxi-
mating the object function, This can be explained in the Fourier
domain by observing that the Fourier transform of a mth degree
B-spline is a sine function to the power m+l, As m increases the
amplitude of higher frequencies decreases, Since a blurred image
has less higher frequency content than the object, a higher order
B-spline can represent the image better than the one representing
the object,

Using vector space notation, Eq. (4,5) may be written as
g = HE (4. 6)

where g and f are vectors consisting of coefficients 5 and fi' and H
is a circulant matrix with elements hj' If the point-spread-function
is of finite width, the matrix H is banded,

As an experiment to compare spline functions with the pulse
approximation method, a rectangular object is blurred analytically by

a 4th degree polynomial of the form

2
15 ¢ x
hix) = g:(l —(-3-——5—> > -3.5sxs13,5 (4, 7
=0 |, elsewhere

and this is plotted in Fig, 4-1, The object is a rectangular function,
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thercefore it is interpolated by B-splines of degree zero,  I'he second
derivative of h at points x = -3,5 and x = 3,5 is a step function and it
is interpolated by B-splines of degree two, Since the convolution of a
zero degree and a second degree B-spline is a cubic spline, the
image is interpolated by cubic B-splines, Figure 4-1b, the restored
image with and without splines, shows that the spline restores the
edges much sharper and generates less undulations than the common
pulsc approximation method. Using different degrees of B-splines
for object, image and point-spread functions depending on their
characteristic has led to a more accurate model and thus a better
quality restoration. Spline restoration can also be applied to a two-
dimensional blur with very good results [43].

4.2 Restoration of Space-Variant Degradations by the Minimum
Norm Principle

In the previous chapter, a noiseless blurred image was modeled

by the expression

g = Hf (4, 8)

where H represents the blurred matrix, If H is square, non-

singular and well-conditioned, the restored image f can be obtained by
f=H g (4.9)

-1
where H  denotes the inverse of H. In most practical cases, H is
either singular or ill-conditioned duc to its large size and due to the

fact that most imaging systems irreversibly remove certain aspects
45




of the original object, In underdetermined or overdetermined models,
which will be defined later, H is not a square matrix, ['hus ¢ven in
the absence of noise an estimate of £ cannot be obtained by 4, 9y,

Fhis suggests the definition of a reasonable fidelity criteria which
leads to a unique solution for i 'he minimum norm criterion is

defined as the following
. | ‘12
minimize | f (4,10)

among all f_e:Rn which minimizes

g-H £ (4.11)

where !+ |l denotes L._-norm of the vector. Albert [44] has shown

2
that there exists a unique solution for the above minimization
problem, The solution to (4,10) and (4,11) may be obtained by the

standard methods of the calculus of variations, Using Lagrangian

parameter 62, the functional
2 2
wif) =llg-HE|l” + 8 £]]

must be minimized, Taking a derivative with respect to f,

W
of

%

2
= 2H'(g-HE) +28°L = 0
the optimal estimate for f is

- -1
f = 1im (H'H+ %) g (4,12)
540

where I represents the identity matrix whose dimensionality is
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understood from the context, For example, if His m xn, Iis an
n x n identity matrix. It is shown [44] that for any m xn matrix H

2 -
g = 1im @'+ D H (4.13)

6+ 0

. + .
always exists and H 1is called the pseudoinverse of H, For any m
dimensional vector g,

f=Hg (4,14)

is the vector of minimum norm among those whi-h satisfy (4,11),

The minimum norm { is an element of R(l—l_t), the range of Et, and

satisfies the relation
HE = § 4
where g is the projection of g on R(H). Since

bt 2t t t, 2
(HHH +8H) = H(HH +6I)=(_}f§+621)_}it

. t 2
and since (HH +01)and (Iit_Ii + 621) have inverses when 62 >0, itis

clear that

2_ -1
HHE+6D H = HMHH +8D
+
and H can also be expressed as

2 -1
B = umgtme + 6 (4.15)
60

Equivalently, the pseudoinverse of a m X n matrix H is

defined as an n x m matrix X satisfying the following four properties:

47




i
1) HXH = H, (4,16a)
2) XHX = X, (4. 16b)
3) (r__zq_)t = HX, (4. 16¢c)
49 xmw' = XH. (4. 16d)
T'he above properties are necessary and sufficient conditions for
X = H' given by (4.13) or (4.15),
When object and image are represented by other basis functions,
such as B-splines, in a continuous-continuous model, a similar
minimization criterion may be applied, Let j
M
€y = €a 4,1
f(5) = D) £B_(2-8)) (4.17a)
i=1
N
= - 4,17
g(x) g.B (x-x.) ( )

i=1
where Bm and Bn are B-splines of degrees m and n, Here g(x) is
related to f(x) by the superposition integral given by (3,5), Defining
the following objective function
® ® 2

wie) = [ (sx0-] hix, 952048) ax + 8] (’ar, (4. 18)

substituting (4.17a,b) into (4.18) and taking derivatives with respect
to f, the optimal estimate for f is

A _l ¢
f = (2+52§) Qg (4.19) 4

where the vectors f_, g, and the matrices P, B and Q arc defined by
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A ~ ~ t
= [flyfzxoctrfm]

l"'s)

t
g_ = [glvgzs'-'th]

- t
(6) = B_(F-£,),B_(F-F,),...,B_(7-7 1]

E—ro m M

t
_}én(x) = [Bn(x—xl),Bn(x-xz),...,Bn(x-xN)]

plx) = J‘" h(x, £)B_(£)d*

[- -]
P = [ pep‘adx
B=[ B (FIBL (£)ar
- _w—“rn -m
Q = J' QB(X)E:l(x)dx

T'he matrix P is symmetric and non-negative definite, Assuming q

to be an arbitrary vector of dimension M, then

- o

9Py = | a'peop (xladx = | (a'px12dx = 0.

- -®
I'he matrix B is symmetric, banded and positive definite matrix
consisting of the values of a B-spline of degree 2n+l at its knots,
Therefore, (£+62§') is positive definite and invertible.

If the functions f, gand h are represented by B-splines of degree
zero, then P = ﬂtﬁ_, Q= ﬂt and B =1, and Eq. (4.19) simplifices to
(4,12), A similar formula is derived for the continuous-discrete
model when the objective function is defined by the minimization of
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the second derivative of f [45] .

4,3 Pseudoinversion and Singular-Value—Decoonsition

Che specific structure and properties of a matrix are quite
useful in determining its pseudoinverse, For a nonsingular square
. : 2 -1 e
matrix, since f =H gis the only vector minimizing (4,11), the

pseudoinverse is the same as the inverse. If matrix H is diagonal:

H-= diag()\l,)\z,...,)\n) (4.20)
then
+ . + 4+ +
_I‘_{ = dlag()\l, AZ,.uop)\n) (4'21)
where
-1
4 A if A\, #0
o=} ! ' i=1,...,n . (4.22)
b 0 if A =0

This result agrees with the result from a least squares viewpoint,

For H given by (4,20), the value of

2 I 2
Ho- = - Z -
is minimu..: when
-1
N, g, if \.#0
i i i

™D
i

i=1,...,n
arbitrary if X =0
1

Among all vectors f satisfying (4.1), the one with minimumnormis

f =0 if x =0,
1 1

. . . I3 . - . »‘
Thus, the minimum norm solution for a diagonal matrix is { = Il g
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where E+ is defined by (4,21),

Equation (4,22) shows the radically discontinuous nature of
pseudoinversion, I'wo matrices may be very close to each other
element by element, but their pseudoinverses differ greatly. For
example, the diagonal matrices

1 0 1 0

A = and A =
4 By _
0 0 0 10 >

are close to each other, but
A, = and

US| 4
0 o0 o 1o’

=
1]

differ greatly. The reason is that (4,22) exhibits an infinite dis-
continuity at A = 0, This characteristic induces serious computa-
tional difficulties, particularly due to computer precision and round-
off error where a small number might be actually zero or vice versa,
This will be discussed more in the computation of ﬁ+ for a general
mXx n matrix,

The pseudoinverse of a symmetric matrix can be derived by

using the diagonalization theorem, A symmetric matrix H can be

written as

t
H=EAE (4.23)

where E is an orthogonal matrix and A is diagonal, Substituting

(4,23) in (4,12) gives
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2 2. -1 t
H = lim EMA + &I AE
520

2. -
= E[lim (AZ + 517 A E'
5-+0

- EatE

(4.24)

where A+ is defined by (4,21) and (4,22), Thus, the pseudoinverse
for a symmetric matrix is obtained by pseudoinverting the diagonal

matrix of its eigenvalues, Equation (4,24) can equally be expressed as

at - 2; AFe et (4.25)
- 4 11
i=

where e, is the eigenvector of H associated with the eigenvalue )\i.

If His a rectangular matrix of full row rank, i,e,, the rows of
H are linearly independent, then Eﬂt is invertible and eq, (4.15)
simplifies to

H' = Et(g Et)‘l (4.26)

Although Eq, (4.25) presents a straightforward method for computing
ﬂ+, the problem of inverting the m x m matrix (H ﬂt) remains, This
can cause difficulties for even moderate size images. In this
situation, the observation can be partitioned into smaller segments
which are used for estimation of the corresponding object sections,
Moreover, since the number of linear equations is less than the
number of unknowns in (4, 8), the estimated objcct ?_is not necessarily

equal to the original object f. In other words, a full recovery of the
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vector f is not guaranteed, Nevertheless, the estimated vector f

satisfies the relation

Jo
|v-h >
1}
p
"
|z
|

because

e - pptEEY g = g,

—
——

ui -

oo
I'T

If His a rectangular matrix of full column rank, i,e., the
columns of H are linearly independent, then _}it_l-i is invertible and
Eq. (4.15) simplifies to

gt - @'mH (4.27)

In this case, the number of linear equations, or in other words,
the number of observations, is more than the number of unknowns.
If the system of equations is consistent, i.e., g is a linear combin-
ation of column vectors of H, which is always true in noiseless
models, the estimated objectg_ is the same as the original object f

because

- -1
- p'g - @' 'Ey - @'w HB =L .

o>

Thus the object can be recovered from the image without any error.
A computationally efficient method utilizing the Fourier properties
of circulant matrices has been introduced for the pseudoinversion of
full column matrices in space-invariant degradation f13].

When H is a general m xn matrix with no particular structure,

singular-value-decomposition (SVD) techniques can be used for
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computation of the pscudoinverse, Let H be an m »n matrix and let
A be the r ¥ r diagonal matrix consisting of the square roots of the

. t . . :
nonzero cigenvalues of H H, Then there exists an m X r matrix U

and an r X n matrix V such that the following conditions hold ‘i44?, 167

_\it (4. 28a)

|z
1
—

U

HtE ‘ (4, 28b)

1}
i<
j<

I

t
The columns of U are orthonormal eigenvectors of H H and the rows
t
of V are the orthonormal eigenvectors of H H., The decomposition

(4.28) is called the singular-value-decomposition. Equation (4, 28a)

can be represented as

H = Auv (4.29)
- 11/

which leads to pseudoinverse of H in the following form

Ir
-1
B =) v = vAT U, (4.30)
i=1

The SVD algorithm developed by Golub and Reinsch [46] computes
)‘i’ u, and T i=1,.,.,n, in a numerically stable way without
explicitly forming H _I-lt or _Iitﬁ_. It uses a Housholder transformation
to reduce H to a bidiagonal form, and then the QR algorithm to find
the singular values of the bidiagonal matrix.

In practical cases, a judicious choice of eigenvalue cutoff Xr

must be made for nonzero eigenvalues, If the )\i's, ordered in
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decreasing value, show a sudden decrease in value as a function of
the index i, then the threshold may be located at that point, The
decrease in value can be by a factor as small as the machine
precision, If such a sudden decrease doecs not exist, a threshold &
which is dependent on machine precision must be selected and the
eigenvalues smaller than ¢ are declared zero, The value r deter-

mines the rank of H and small eigenvalues )\r re ey )\n are assumed

+1
to be roundoff error, Equation (4,29) expands H in terms of system

eigenvectors; thus the )\,l's are the effective spectral components,

General outer-product expansions of H are given by

H = ZJZ%P-'[%F (4.31)
1

where ui and vj can be the discrete Fourier basis vectors, Walsh-
Hadamard, Haar, Slant, or other orthonormal bases, Witha
space-invariant degradation, H is a circulant matrix that can be
diagonalized by discrete Fourier transform$. Thus, the SVD
procedure is analogous to the discrete Fourier-inverse-filtering

method that is widely used for space-invariant processing.,

4.4 Restoration of Astigmatism and Curvature-of-Field

Optical images are subject to a number of blurring effects due to
aberrations, Certain aberrations, such as spherical abersation,
can be described by convolution integrals and canbe solved in the

Fourisr domain, For other aberrations such as coma, astigmatism
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or curvature-of-ficld, the blurring is space-variant, When the
effects of astigmatism and curvature-of-ficld predominate, the

geometrical-optics aberration functions

2
x-7 (2C+D)° r cos 2 (4, 32a)

2
y-T" = D r sin ? (4. 32b)

describe the displacement of an image point from its ideal (Gaussian)

intercept in the image plane, Here r and € are ray intercepts in the

exit pupil of the optical system, and C and D are constant coefficients |

describing the degree of astigmatism and curvature-of-field,
respectively [22], 487, Using a technique described in [22]and [48],
the space-variant point-spread function (SVPSF) of the system for a

circular exit pupil of radius R is obtained as

2 2
l Y + (x-7) <1
4 2.2 4 4
D(2C+D)° DRE (2C+D)2R2%‘
h(x,y;%, M1=0) = (4,33)
o, elsewhere

assuming an object impulse function at (£, ®=0), This function is
given in Fig, 4-2 for the impulses at various locations in the (%, T)
plane, The region of nonzero response are defined by ellipses which
increase in size proportional to the square of the radial distance, and
the amplitude of the response decreases inversely with ’4. Although
the system is strongly space-variant and the blurring occurs in both

radial and angular directions, changes in the amplitude and shape 5¢
)
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of the response are a function only of radial distance. Thus, the
PSF h(+) of Fg, (4.33) written with = 0 is just rotated about the
origin to obtain the general response., Because of the inherent
circular symmetry, the system complexity can be reduced by a polar

coordinate transformation of the form

£ = DO cos ;00 (4, 34a)
= i 4, 34
n OO sin coo (4, 34b)

in both object (with subscript 0) and image (without subscript) {

coordinates, and rewriting Eq, (4, 32) in the form

2 iJ
0= 0, = (2C+D)oor cos & (4. 35a}
[
w-0,. = tan_l{Dp r sin 8/ (1 +(2C+D)0 r cos 21 = u(p.)
0 0 0 0
(4, 35b)

where (00,:90) and (n,®) are the object and image polar coordinate
variables, In this form, the two-dimensional space-variant radial
blur becomes decoupled from the angular blur because Eq, (4, 35a)
does not contain ¢ or 0y I'he blur in the angular direction is space-
invariant in ©® and a slowly varying function of position 0, s
expresscd by u(oo) in Eq, (4. 35b),

When the degradation is purely astigmatic with no curvaturc-of-

field, the D coefficient in Fg, (4.32) becomes zero and Eq, (4, 33)
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becomes singular because no blurring occurs in the angular direction,
To find the SVPSF for astigmatism only, Eq, (4, 33) is first collapsed

to a purely radial space-variant blur by ha(x;", T=0) by evaluating
-]
h (£, 1=0) = [ hix, yi¥, 1=0)dy (4.36)
c -
and taking the limit as D approaches zero., The result is

fac?r®s? (x-6)%1" 2 2
> -4("" , F-2CRf" <x<F 4 2CRF™ (4.37)
2c%e

ha(x;‘j:,T]-—-O) =

and zero elsewhere, The region of support and cross section of this
function are shown in Fig, 4-3, With astigmatism only, the degrada-
tion reduces to a two-dimensional space-variant line blur in a purely
radial direction, Figure 4-4a is an aerial photograph displayed as
128 128 discrete picture elements after blurring by astigmatism
withR=1and C = 7,5 x 10_4. Note that the blurring increases from
zero on the optical axis (upper left corner) to nearly 50 picture
elements in width as a function of increasing radius,

For the system degradations due entirely to astigmatism, the
ideas of coordinate transformation restoration (CTR) [22'] can be used
with little modification, The basic idea i8s to reduce space-variant to

space-invariant distortions by invertible coordinate transformation, The
SVPSF of Eq, (4.37) can be modeled as a polar coordinate transform-

ation on the object coordinates, followed by identical space-variant
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(a) SVPSF for pure astigmatism with inputs at various

distances 7,

A
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(b) Cross-section of astigmatism SVPSF

Figure 4-3, SVPSF and its cross section for pure astigmatism, : A
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{a) Image degraded by (b) Polar transformation of (a) )
astigmatism !

{c) Restoration of (b) (d) Restored image

Figure 4-4, Restoration of astigmatism,




radial blurring for each % variable, A final inversce polar trans-
formation on the image coordinates completes the model and produces
the PSF shown in Fig, 4-3, Pecrforming this decomposition reduces a
four-dimensional space-variant restoration problem to a single two-
dimensional problem,

Using the transformation, we can write the radial degradation

in matrix form as
Glp,® = Hlo,0))E(0,, ) (4, 38)

where G and F are matrices representing image and object in polar
coordinates and H is the blur matrix obtained by applying a mono-
spline quadrature formulae, which was discussed in section 3,5, to
the continuous space description of Eq, (4,37), This quadraturc
formulae provides a more accurate and smooth discrete approxima-
tion to the continucus representation of Fq. (4,37),

The space-variant restoration procedure (C [R) procceds by
inverting the two polar coordinate distortions and solving Fq, (3, 38),
Unfortunately, a direct inversion of H is usually not possible because
point-spread function matrix H tends to be ill-conditioned leading to
numerical problems, The ill-conditioning is a rcsult of the inform-
ation loss associated with the imaging process; thus H is genecrally
singular and pseudo-inversion must be used, For inversion of
F.q, (4,38), the singular value decomposition algorithm, which was

discussed in the previous scction, is used to obtain a unique pscudo-
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inverse H o which is then used in the restoration operation

- +
g(no,co) = H (oo,o)g(n.w) (4. 39)

Fhe C 'R procedure has been implemented or the imag: degraded
only by astigmatism in Fig, 4-4a, First a polar coordinatec trans-
formation is performed to produce Fig, 4-4b in which the space-
variant blur (4,38) occurs in only the radial direction, Figure 4-4c¢
shows the restoration by SVD, in which the 7 singular values out of
128 whose magnitudes were less than 10-5 were not used, Figure 4-5
shows the singular values in a decreasing order. Following restor-
ation of each line in the (p,®) system, an inverse polar coordinate
transformation is used to produce the final result of Fig, 4-4d.

This procedure can also be used for restoration with both
astigmatism and curvature-of-field present, First, the imaging
equation is expressed with a polar coordinate transformation (3. 34)

in the form
ol
66,9 = [[ b0, @ing@y)tloy Mo de, (4. 40)

and then rewritten as

g(o.to)=r

' - 1
h'(p, Pgr P-%y» u(oo))f(oo.coo)doodcoo (4.41)

8c—>

using cp-cpo and u(oo) of ., (4.,35) to emphasize the functional

dependence. Defining a Fourier transform of g(n®)inthe ®variable by
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@«
g0, = | g, plexp(-jzmelde (4.42)
-0

the transform of both sides of Eq, (4,41) is taken to obtain

©
go,\) = ﬁ f(oo'woﬁ;(o’po’)"“(00”6""(‘52”)‘@0)dw0d°0

- (4. 43)
where h is the Fourier transform of h' in . Grouping terms con-
taining %, on the right side of Eq, (4,43) enables a transform in this
variable to be evaluated, The resulting transformed function ?(Q, M)
is given by

o

_ _ y P
F(ogr M) jgf(oo,cp())exp( j2ma ), (4. 44)

and the reduced system equation obtained from Eq, (4,41) is

2o, \) = j B9, 0y M0y, Mgy (4. 45)

where

B(0,PA) = hip,pg, N, ulpy))

is written as a function of three variables to show explicit depend-
ence,

This procedure can be extended for the restoration of images
degraded by simultaneous astigmatism and curvature-of-field
aberrations, Following a polar coordinate transformation, a Fourier
transform in ¢ as expressed by Eq. (4,42) is performed to partially

decouple a blur as a slowly varying function of u(oo). The reduced 65
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system given by the continuous space integral Eq, (4,45) has the
same form as the discrete equation (4, 38) for astigmatism, An
estimate f—(no, L) is then produced by the SVD for each separate )\
using similar techniques. The computational effort in this operation
may be reduced by using the known variation of E(n,po, ) with 2,
After the entire -f—(oo, A) has been obtained a series of one-dimensional
inverse Fourier transforms in cpo is taken to find f(oo,coo), and an
inverse polar coordinate distortion is used to get f(5,T) as the final
restored object, This procedure, while requiring large capabilities
in computing and storage, is the only practical method for restoration
of images of even moderate size, The general four-dimensional
space-variant blur is effectively reduced to a set of space-variant
two-dimensional problems whose point-spread functions depend in a
welil-known way on A\,

4.5 Overdetermined and Underdetermined Models

When the degradation matrix H of an imaging system is of full
column rank, the model is called overdetermined, In practice, this
usually occurs in two situations, The first is when the object has
zero background and the object and image are sampled at the same
rate, The second occurs when the image is sampled at a higher rate
than the object,

Suppose the object function f has zero background, i,e,, f(x)is

zero if x < x, ir x >xN, and the point-spread function h(x) is space-
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invariant, sy'nmetric and space-limited of width 24, Then the limits

for the convolutional integral are

[
]

max(x- t,xl) (4. 46a)

o
]

min(x+4, xN) (4, 46b)

and the degraded image is given by
b
gx) = [ hx-SH(E)dF (4,47)
a
Assuming uniform sampling of image, object and PSF with sampling

interval Ax = 1, the continuous model can be discretized as

K

N

gli) = RIS IE (4. 48)
J=Ky

1
R

where c. . is the quadrature coefficient associated with h(i-j), and

K

1 max(i-L, 1) (4.49a)

K min(i+L, N) (4.49b)

2
where L is the integer part of L, The image sample g(i) is not zero

if -L+! =i s N+L, and thus the number of observations is
M=N+L - (-L+1}+1=N+2L (4. 50)
Using a vector space notation, the equation (4,.48) becomes
g = Hf (4,51)

where I is the overdetermined M x N blur matrix defined by
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where
h = e ey , ,h ,...,h .
ho= (b hy.ho, by . (4. 53)

is the impulse response vector,
Since the vector g is inthe range of H, R(H), there exists at

least one vector f that satisfies (4, 51), This estimate is uniquec,

“ -

otherwise, if distinct vectors Ll’-f-

5 satisfy (4,51), then

|>"\)

Hf{ -H

» ~Hg-Hg =20

and

HE -f.) =0 (4,54)
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since f—l -_;2 # 0, Eq. (4.54) indicates that a linear combination of
columns of H is zero which contradicts the assumption of an over-
determined model, This unique solution can be obtained by the
pseudoinverse of a full rank matrix of by SVD algorithm discussed
in section 4,3, In noisy images, g is not necessarily in ?(E), and a
least square criteria based on (4,11) leads to a unique solution [16.‘1 .

A more realistic model for an imaging system can be obtained if
no restrictions are imposed on the background of the object. In
practice, few objects are recorded with a background of zero or
known intensity, Moreover, because of computational problems, an
image is often partitioned into sections before being processed, and
thus the assumption of zero background cannot be valid., A model
must be used that relates a portion of the object to the corresponding
segment of the image without any restrictions on the background, In
such a model, because of blurring, a portion of the image is affected
by a larger segment of the object, Therefore, if the object and image
are sampled with the same rate, the matrix H has more columns
than the rows, and the system is underdetermined, Following the
same procedure as with overdetermined models, the system is
represented by

g = Hf (4.55)
where His M x N blur matrix, and
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M = N-2L
The matrix H is given by
. h c.h, ... c.h O
crhp oo 9Py SoBp SiBy vee by
\ \ \ \ Y
\ \ \
3 \
. * \\ \ ' ‘~ 0
H = ‘\ . . \ . \\ (4. 56)
0 ) \ A
l\.l h h s e s
CLhL Clhl c0 0 ¢ hy CLhL

where h and ¢ are the same as overdetermined model, As mentioned
in section 4. 3, the system (4.55) does not have a unique solution,

The minimum norm solution based on (4,10) and (4,11} is unique and
can be obtained by (4.26) if H is of full row rank, or by the SVD

algorithm,

4.6 Experimental Results

T'o illustrateimage restoration by pseudo-inversion, Fig., 4-6a is
selected as a test scene which is originally of size 128 x 128 picture
elements (pixels) with 110 x 110 nonzero elements. For display, this
zero background picture has been enlarged by cubic spline inierpolation
to an image of size 256 x 256 pixels., Figure 4-6b represents the
image after undergoing motion degradalion with a blurring point
spread funcdion of length 11 pixels, This is a severe blur hecause

it is 1/10 of the original picture size. The obscrved image is of
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size 110 0120 and thus the sysiem is overdecermined as discassed in

secion 4.5, [he blur matrix His a 120 x 110 handed matrix given
by Fg, (4.52) with Il nonzero elemen s on vach colimn, Although
t'as matrix is of full column rank, because of high dimensionality
and ill-conditioning, using Fq. (4.27) and inver.ing 1_1[_{ produces
computational difficul.ies, T[hus, the SVD algorithm has been
employed to compute the pseudo-inverse of matrix H. Figure 4-7
shows Lhe singular values of H ordered in decreasing value. Since
the singular values are much greater (han the machine precision and
there is not a sudden decrease in value, all of them have been used
used for computation of _}_I_+. Figure 4-6c shows the restored image.

As far as visual perception is concerned, this restored image is

identical to the original scene.
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Chapter 5

RESTORATION OF NOISY IMAGES

In the previous chapter, the problem of image degradation and
restoration was modeled for a noiseless system. In reali'y, an
image is ofien affecied by a varicty of noisy sources. The scanner
measurement error is a source of noise which adds some elemen:
of uncertainty to the mecasured signal. The quantizer, that maps the
signal amplitude to a finite number of digital levels for compulational
and coding purposes, is ano.her source of noise, Coding and channel
errors occur when _he image is transmitted through a noisy channel.
Computers produce truncation and roundoff errors due o the limits
of machine precision. Photographic film is the most common
recording system in image processing and is another source of noise
which will be discussed in more detail in section 5. 3,

Although, these examples are not an exhaustive list of noise
sources, noise nf various types is a common problem in every type
of imaging system. In this chapter the effects of noise in image
restoration is considered from several viewpoints.

5.1 Discrete Wiener Filter

The basic idea of the Wiener filter and its derivation in a
continuous model was discussed in secltion 2.3. In this section,

the same fidelity criteria is applied to a discreie model and the
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filter is obtained,
In the presence of noise, the discrete imaging model is given by
f49]

g = Hf+n (5. 1)
where H is the blur matrix and n is the noise vecltor, Assuming the
vec:ors f and n are members of two random processes, the minimum
mean square es.imate of f_isf_ such that it minimizes the objective

function
~ 2
e = E[f-£)7] (5.2)

where E denotes the expectation over processes f and n. Let the

~

estimate f be represented by

|0'h>

= Rg (5. 3)

where R is a linear filter. Using the orthogonality principle [50] ,

the observation g and the error i-f;must satisfy the following relation
ot
Elf-g] = 0 (5.4)

Substituting (5.1) and (5.3) in Eq. (5.4), and assuming f and n to be
zero-mean uncorrelated random vectors, the Wiener filter is derived

as

-1
wwEcH +C)H (5. 5)
— = -

R - =

<

where Sf and -C—n are the correlation matrices of the signal and noise,

t
respectively, Clearly, it is assumed that _H__C_fH + _C;n is non-
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singular. If the noise is white, this condition is satisfied, beccause

1 L. ..
H is non-negative- definite and C_is positive-definite, there

HC,

t . .
fore H C I + gn is positive-definite and consequently is nonsingular.

f

Another version of (5.5) can be obtained by using the matrix identity

|
[51]

in Fj. (5.5)

1 At -1
H+C.HC (5.7

f — ™n

R = (H'C”
- — —=n

where En and C.are assumed (o be nonsingular. Although these two

{

versions are equivalent, their computation in practice depends on the

structure of H, C and C_.. If H has fewer columns than rows,
Poniiank - _f —_

t ) t -1 -1
HCH + C has a higher dimensionthan HC "H + C_ ', and there-
— —f— —n —— — —f

fore needs more compulations for inversion. The order is reversed
when the number of columns is more than the number of rows,
Moreover, Eq. (5.7) requires the inversion of two more matrices;
C and C,.

-n —f

Che Wiener filter can also be obtained by minimization of the

objective function

-1 2 i § 2
- 2 2.,
wig) = [l *tll” +lic *g-H 1l (5. 8)
1 i
where C_° and C_? are the whitening filters for the signal and noise,
—f -

respectively. Taking derivatives with respect to f
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dw -1 t -1 t -1
—_— = f -HC
G C S LYHC HL-HC g
and setting the result equal to zero, the estimate is
- t -1 -1 -1t -1
= 5.
£= (HC H+C/ ) HC g (5.9)

which is the same as (5.7). The inversion of large size matrices in
Eqs. (5.5) and (5.7) is not an easy task, particularly because of ill-
conditioning. Using the Fourier transform for the inversion of
circulant matrices leads to a fast Wiener filter with much less
computation and higher efficiency [13].

5.2 Filtering of Unblurred Noisy Images by Smoothing Spline
Functions

As discussed in Chapter 1, the Wiener filter has many limitations
and shortcomings., Not only does it require the most a priori inform-
ation, it often produces an estimate of the restored image with poor
visual quality in comparison to other filters [52] + T'he constrained
least squares estimate which has been introduced as an alternative
to the Wiener filter is capable of producing images with much higher
visual quality, Moreover, this estimate requires less a priori
information than the Wiener filter [20] .

In this section, a constrained lcast squares estimate hased on the
minimization of the second derivative and local statistics of the noise
is defined and the corresponding filter, which produces a cubic spline

function as the estimate, is obtained. The paramecters of this filter
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determine the local smoothing window and overall extent of smoothing,
and thus one can control the tradeoff between resolution and smoothing
in a spatially nonstationary manner. Since the derivation of the filter
for unblurred noisy images is simpler and the estimate can be compu-
ted by highly efficient algorithms, the derivation of the filter for
unblurred noisy images is covered here, The corresponding filter for
noisy blurred images will be covered in section 5, 5.

For an unblurred noisy image, the image g(x) is given by
g{x) = f(x) + n(x) (5.10)

in a continuous model., The additive noise n(x) is assumed to be an

uncorrelated zero mean random process, i,e,,

E[n(x)] = 0, E[n(xl‘m(xz)] = 0 for xlfxz. (5,11

In order to filter the image, the following fidelity criteria is defined:
. . 2

minimize \J (f'"(x})) dx (5.12)

2
among all twice differentiable functions feC such that

(x,)-f(x,) 2
Z(f_xlg_(i_) <s (5.13)
i i

where the positive number 6i locally controls the simoothing window

at point xi and S controls the overall extent of smoothing, 1f -, the
i

standard deviation of noise or ils estimate at point x. is available, then
1

it can be used for 8§, In this casc, natural valucs of S lic within the
1

T




confidence interval of the left side of (5. 13) that is

o=

1
N - (2N)? SS SN + (2N) (5.14)

where N is the number of data points. Reinsch [53] has shown that
the solution to (5.12) and (5.13) is a cubic spline and more generally
is a spline function of degree 2K-1 for least squares minimization

of the Kth derivative instead of the second derivative [54] . The case
K = 2 leads to very simple algorithms for the construction of f(x),
Moreover, cubic splines give satisfactory results and are easy to

evaluate, Choosing S equal to zero implies
flx,) = glx) i=1,,..,N

which leads to the problem of interpolation by cubic spline functions,
Applying the well-known Lagrange multiplier method, along with
the auxiliary variable z to change the inequality constraint (5.13) to an

equality constraint, the objective function

XN 2 g(x.)-f(x,) 2
S e dx 4 p i(—‘s——‘—) +2° -8 (5.15)
X i=l i

must be minimized, The optimal function f(x) i8 determined as the

following

f(x,) ~f(x) =0 i=1,...,N (5. 16a)
1 - 1+

f'ix.) -f(x) =0 i=1,...,N (5. 16b)
1 - 1+

f”(xi)- - f"(xi’+ =0 i=1,..,.,N (5. 16¢)

79

. -




fix )-g(x.)
1 1

1" . fin =2p ~—— i =1
f (Xi)_ f (xi)+ P 62 i seee, N
i (5.164d)
where f(k)(x)t= lim f(k)(xd:h) for K=0,...,3., Moreover
h-+0
1 — - -
frovyx) = 0, X, <X <X, i=1,,,.,N-1, (5.16e)

Equations (5.16) indicate that the function f(x) is composed of piece-
wise polynomials of degree 3 or less in each interval [xi,xi“-]of the

form
2 3
f(x) = a, +b (x-x) 4+ c.(x-x,) + d, (x-x,) (5.17)
i i i i i i i

such that they are continuous up to the second deri vative at their
joining points, and thus the solution is a cubic spline, Assuming
f(x) to be a natural spline [33] of degree 3, the following extra

conditions

£r(x))_ = £100x)) = ) = N x), = 0 (5.18)

must be satisfied. Substituting (5.17) in (5,16) and (5.18), the
optimal filter with respect to conditions (5,12) and (5.13) is obtained

as [Appendix A]

E_ = g- RZQQtQZQ + p£>'19ta (3. 19)
wheore
t
£ o= L)), f0xy), 0 en £(x )] (5.20a)
t
g = [g(x]).g(xz),....g(XN)] (5.20b)
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- . " .
D d\ag[él,éz,....bNJ. (5.20c¢)

Matrix T is a positive definite tridiagonal matrix of order N-2, and
Q is a tridiagonal matrix with N rows and N-2 columns, For a

uniformly sampled image with unit sampling interval, Q and T have

the form
]
4]
) 1
Q = 1 N (5.21a)
- ;
1 1
o )
1
_ _
4/3  1/3
0
1/3  4/3 1/3
~ ~ ~
I AN (5. 21b)
0
1/3  4/3 1/3
1/3  4/3

Here matrix Q represents a second order differentiation matrix,
Since Q is a matrix of full column rank, and D is nonsingular, the
matrix Q_tp_zg + pI has an inverse for all values of p 20, Thus, ifp
is8 known, the estimate ?_ can be obtained by (5,19), The Lagrangian

parameter p, like S, controls the overall extent of smoothing and
&l




may be determined in terms of S,
The objective function (5,15) has to be minimized also with

respect to z and p, leading to the conditions

pz = 0 (5,22)

(——6—__—> = S-zZ. 15,23)

2 -1 1
Fip) = [|pDQ@' D’ + pry'Qlgl| = (s5-29)° (5.24) ;

Corndition (5.22) implies either p = 0 or z = 0. The first case is only

possible if F(0) €S, and thus the straight line fitted to data points by #
least square principles satisfies condition (5,13) and the cubic spline
reduces to this straight line, If F(0)>S, thenp # 0 and z = 0, the
inequality constraint (5,13) changes to an equality constraint and Eq.

(5., 24) can be written as

(i

F(p) = S (5.25)

Reinsch {40] has shown that there exists a unique solution for p
satisfying (5.25) and (5.12), This positive unique solution can be
determined by using Newton's method,

Since the parameters p and S are interrelated by (5,25) and

both have the same effect on filtering, by selecting p instead of S,

one can skip the iterative Newton's method to compute p and reduce
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the numerical operations considerably.

The matrix [ is positive definite and invertible, by using matrix
identity [Appendix B}, Ea. (5.19) can thus be written in the more
concise form:

~ -1_2 -1 -1
f=1+p D@1 Qg (5.26)

Although (5,26) appears simpler, it needs two matrix inversions in
comparison to Eq. (5.19) which requires the inverse of a banded
matrix, The Cholesky decomposition [55] 31’5 of a positive-definite
band matrix gt_D_Zg + pI, where R is a lower diagonal (triangular)
matrix, provides an efficient computational algorithm for performing
the filtering of Eq, (5.19),

5.3 Application of Smoothing Spline Filter in Signal-Dependent Noisy
Images

An interesting property of the fidelity criterion (5,13) is that the
smoothing window can be locally controlled by determination of 6i'
If the noise variance is higher in some regions, éi can be set larger
at that region. This property enables the spline filter capable to
restore images even with the difficult problems of signal-depeundent or
multiplicative noise, A common source of ihis tvpe of noise is
photographic film, and since it is widely used as a recording system
in image processing, the restoration of images degraded by film-
grain noise is very desirable.

Image formation on a photographic film is a complex optical and
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chemical process, A very accurate model of this process, even if
possible, is too complicated to be used, and a very simplified model
can hardly represent the actual physical process. A reasonable and

fairly accurate model for film grain noise is given by be] , 587

1
D =D +kD;n (5.27)

where Ds is the signal density, Dr is recorded density on film and n
is zero mean Gaussian with unit variance that is statistically independ-
ent of the signal, A block diagram of this model is shown in Fig.
5-1a,

EqQuation (5.27) shows that when the signal has a higher amplitude,
noise has a greater variance. To apply the above mentioned filter,
the value of bi and an estimate of the signal are needed, Hunt and
Cannon [59] have shown that images are well described statistically
as a stationary variance about a spatially non-stationary local
mean, Assuming ergodicity of similar classes of images, the
spatial average may be used as an estimate of the ensemble average.
A local spatial average is thus used as a non-stationary estimate of
the signal mean, Since a linear estimate of bi in terms of the observ-
ation is used in a nonlinear manner to filter the image, the overall
filtering is nonlinear, The block diagram of this filter is shown in
Fig. 5-1b,

The filter of Eq, (5.19) has been applied to an image corrupted
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by signal-dependent noise modeled by Eq, (5.27) when k = 2, Figure
5-2a is the original image, Fig. 5-2b is the noisy image and Fig,
5-2¢ is the filtered result, Figure 5-3a is a plot of the brightness
cross-section of Fig, 5-2a, and the subsequent plots are brightness
cross-sections of noisy and filtered images., The filter has reduced
the mean square error by a factor of ten,

5.4 Restoration of Noisy Blurred Images

A noisy blurred image can be expressed in the form
g = Hf+n (5.28)

for a discrete model, where f and g are samples of the object and
image functions given by (5,20a}) and {5,20b), respectively., The
following fidelity criteria for image restoration may then be

formulated as minimization of

x
2
I e ®ax (5,29)
!
among all twice differentiable function f(-:C2 such that

-1 2
D" Hf-gl = s (5. 30)

where D is defined by Eq, (5.20c). This minimization criteria is
similar to what was defined for unblurred noisy images with a slight
modification, If H =1, the condition (5.30) reduces to (5.13), Using

the same proccedure as before, the objective function

K8




X
2 -1
J N (e (x))dx + pllID (g_;_-gnz y 22 S] (5.31)
X
1

must be minimized with respect to f. Assuming the function f to be

composed of piecewise polynomials given by (5,17), the equations
t

Qc - pu'D%(g-Ha (5.33)

are obtained, where

2 = [CZ,C3,...,C I]t (s. 34)

N-

t
i [al,az,...,aN] (5- 35)

and Q and T are previously defined. In order to satisfy condition
(5.18), < and cn are assumed Lo be zero., Since I is a positive
definite matrix

-1
c = T Qti (5. 36)

and substituting (5, 36) in (5,33) yields

-1 -
o1 Q% = pu'D™?

(E'Ei) . (5. 37)
From (5.17), it is clear that a = i, therefore

-2 -1 -1 -
‘pH+re 1Y u'n Yy (5. 38)

f£-=m

-1
where A= p . Setting H = I leads to the estimate of Fq, (5,26),
Comparison of this restoration filter to the Wiener filter given by

-1
(5.7) shows the similarity of these two filters with S{ replaced by8
9




-1
\QT gt. In order to obtain the filter numerically, it is necessary

t_-2 -1t
to invert the matrix Tas wellas HD H+AQT Q. Matrix T is a
positive-definite tridiagonal matrix and efficient techniques exist for
the computation of its inverse [57] . Since H is a large matrix for
ordinary size images, and also H is not of full column rank for non-
3 B t_ -2 -1t

zero background pictures, the matrix HD H+ AR T Q may be
ill-conditioned or singular and thus pseudo-inversion is used instead
of exact inversion., In section 5,6 the experimental results of this

filter are presented,

5.5 The Fffect of Fidelity Criteria on High Frequency Suppression

In Chapter 4, describing the restoration of noiseless images, a
fidelity criteria based on the minimization of the L,-norm of the
function was defined which led to the filter given by (4.19) and
pseudoinversion, In this chapter, the fidelity criterion is based on
the minimization of Lz—norm of the second derivative of the function,
leading to spline filtering and restoration. In this section, the effects
of different criteria on the frequency content of the restored image

are discussed,

The objective function for both cases has the one common term
2
A ) ax (5. 39)

where X i3 a weighting factor. If k = 0, the derived filter is given by

(4.19) or by pseudo-inversion, and k = 2 leads to spline restoration,

20




Minimization of the objective function implies the reduction of term
{5.39) in addition to the other terms, TIaking the Fourier transform of

this term and applying Parseval's thecorem, it is equivalent to
2
AJ [2mu) *F 1 du (5.40)

where u is the spatial frequency and F(u) is the Fourier transform of
fix), As (5,40) shows, the amplitude F(u) at spatial frequency u is
weighted by a factor (Zﬂu)k and then squared and integrated, There-
fore, as k increases, the weighting factor of high frequency amplitude
increases too, Thus, reducing (5.40) with larger k implies the
suppression of the higher frequencies more than the lower frequencies,
When k = 0, the amplitudes of all the frequencies are equally weighted.
In most image restoration problems with white noise, the original
object is a relatively low frequency signal, and noise has a flat power
spectral density, When the noise power is zero or very low, there is
no need to suppress the high frequency content of the image. More-
over, preserving the higher frequencies preserves the fine details of
the image, and thus, k = 0 is a good choice for noiseless images,
Conversely, for noisy images, where most of the high frequency
content of the image belongs to the noise, k = 2 is a good choice.
Generally, as k increases, the filtered signal is more smooth and

correlated with less higher frequency content,
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5.6 Experimental Results

In this scction the experimental results of restoration of noisy
blurred images by spline functions arce presented, Figure 5-4a
illustrates a scene of original size 128 128 pixels enlarged to
256 x 256 by cubic spline interpolation for display purposcs, Figure
5-4b represcnts the image following motion degradation with a point-
spread function of length 7 pixels and the addition of zero mean
Gaussian noise with standard deviation 1, The observed image has a
nonzero background, and thus the system is underdetermined. For
restoration, the smoothing parameter A of the filter (5,38) is sct to
.0l and ., 001, and the SVD algorithm is employed to compute the

-1
nrg ral,

pseudo-inverse of the matrix L{_tg-
Figure 5-5 shows the behavior of singular values for differcent
values of A, When X\is small, it only affects the smaller singular
values (right side portion of the curves) which correspond to high
frequency eigenvectors, while for large )\, the smoothing term

-1t -2
QI Q completely dominates the deblurring term _I:{_tg H and its

singular values. The effect of \ extends from the left side portion of
the curves to the right portion as )\ increases, For the computation
of the pseudoinverse a judicisus threshold ¢ must be selected for the
cutoff of singular values, Figures 5<4c and 5-4d show the restored

image for A = ,01, ¢=,005, and for A= ,001, € =,001, respectively,

As ) and ¢ decreasc, the restored image becomes sharper with
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Figure 5-4. Restoration of noisy blurrec
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more details, but at the same time the amplitude of unwanted high
frequency components increases, For large \ anc ¢, the restored
image is smoother and more correlated, Thus, by choosing these
two parameters as well as the local smoothing window 6i’ one can
control the tradeoff between smoothing and resolution locally and
globally, It is obvious that the quality of the restored image is

highly dependent on the proper selection of these parameters,
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Chapter 6
CONCLUSIONS AND SUGGESTIONS FOR

FURI'HER RESEARCH

Chis dissertation has presented a theoretical and experimental
analysis of image restoration in the spline domain. Representing
object, image and point-spread functions by splincs has led to a
more accurate and realistic model, The interesting properties of
spline functions, particularly B-splines, have been used in image
modeling and restoration,

Che linecar integral equation that describes the image formation A
has been discretized for processing by a digital computer, Various
methods such as pulse approximat;ion, Newton-Cotes and monospline
quadrature formulae are discussed and compared with each other.
The first two methods are special and extreme cases of the third
one, It is shown that the monospline quadrature formulae of degree 3
produces less error overall than the other two methods, although the
best choice of degree for the monospline is dependent on the variation
of the integrand and sampling interval, For the class of rapidly
varying functions, a smaller m is advised, but for the class of
slowly varying functions, large values of m give better results,
These results are true for both undersampled and oversampled

functions,
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B -splines have been used for interpolation and approximation of
object and image functions, B-splines have some advantages over the
sine and cosine basis functions of the Fourier domain, First, they
are strictly positive and thus they are a better representation of image
intensity. Second, the shape of these functions is fixed except for a
shift of location, This property results in circulant matrices which
are easy to handle numerically, Third, their local basis properties
results in banded matrices, Fourth, their convolutional property
represents the convolution integral of space-invariant degradations,

It has been shown that using B-splines and exploiting the convolutisnal
property for restoration of an analytically blurred image results in a
more accurate reconstruction of the original object, Since the blurred
image is generally smoother than the object, a higher degree B-spline
represents it better than the one representing the object, TI'he degree
of B-spline must be selected according to the frequency content (or
variation) of the approximated function,

The minimum norm criteria leading to the pseudo-inversion has
been used for the restoration of space-variant degradations, over-
determined models and underdetermined models, A numerical
technique called singular-value-decomposition is used for computa-
tion of the pscudo-inverse, Due to the singularity of the system,
ill-conditioning or roundoff error, a judicious threshold for the

nonzero singular values must be made, A sudden decrease in their
97
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values and the machine precision are the determining factors, The
strikingly good results for the restoration of astigmatism which is

strongly space-variant show the validity of the objective criteria and

the capability of the numerical technique,

A constrained least squares criteria based on the minimization
of the second derivative and local statistics of the noise has been
defined and the optimal filter, which produces a cubic spline function
as the estimate, has been derived. This filter is applicable to both
space-variant and space-invariant degradations, The parameters of
the filter determine the local smoothing window and overall extent of
smoothing and thus the tradeoff between resolution and smoothing is A
controllable both locally and globally, These properties have made
the spline filter capable of restoring images with signal-dependent or
multiplicative noise., This filter has been successfully applied for
filtering images degraded by film-grain noise which is modeled as
signal-dependent or multiplicative noise. Since a local spatial
average has becn used as a nonstationary estimate of the signal mean
and local smoothing factor, the overall filtering is nonlinear, The
filter has been also applied to images degraded by motion blur and
noise, The results show that as the smoothing parameter decreases,
the restored image becomes sharper with morc details, but at the ' |
same time the amplitude of unwanted high frequency components ) {

increases, For large smoothing parameters, the restored images
98
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become more correlated, Finally, the effect of fidelity criteria on
high frequency components of the restored image has been analyzed,
If the noise power is zero or almost zero, the fidelity criteria based
on the minimization of the function is advised, but for noisy images,
the fidelity criteria with respect to the minimization of the second
derivative of the function gives better results,

The research pursued in this dissertation may be extended in
several directions, A more detailed study of monospline quadrature
formulae, particularly free nodes, would be of considerable interest.
T'he number of nodes and their locations have substantial effect on
quadrature error and accuracy of the discrete model, This study can
be extended with respect to the behavior and local properties of the
integrand, In approximating the image function by splines, variable
sampling may be studied for optimal knot placement and error re-
duction, A discussion of the problem as well as some algorithms
may be found in references [60] , [61] .

A more detailed experimental study of the spline filter is
particularly useful in determining the parameters of the filter
according to the local properties of the image and noise statistics,
The filter can be applied to non-uniform sampling with minor
modification of the filter matrices [Appendix A] . Thus the
sampling intervals may be determined with respect to local behavior

of the observed image and then the modified filter can be used,
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Recursive computational techniques are of special interest in
real-time processing of the images, A version of the filter may be
developed for restoring images when the stream of data comes from
a scanner or transmitter., Another possibility would be an exploration
of the iterative method for solution of the filter, Such a method has
been developed for computation of the pseudoinverse 627, [63] .

Since the matrices of the spline filter are banded circulant or
loeplitz, very efficient numerical techniques, particularly for
spacc-invariant degradations, may be used,

As mentioned earlier, spline functions have many desirable
approximating and interpolating characteristics that can be used in
various areas of digital image processing. So far, some attention
has been given to potential applications of spline functions in image
restoration and enlargement [45] , [64] . Although this is just
beginning work in utilizing the properties of spline functions in image
restoration, the successful results indicate that further fruitful
research can be performed in this field, Spline functions may be used
in other areas of digital image processing such as image coding and

reconstruction of images from their projections,
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APPENDIX A

DERIVATION OF TI'HE SMOOTHING SPLINE FILTER

Condition {5, 18) implies CyEeN T 0. Substituting (5.17) in

(5.16a1, (5.16b), (5.16c)and (5.164) yiclds

2 3
a. = a. +bh +ch +dh, i=1,,..,N-1 (A-1)
i+l i ] i i
b. = b. +2c.h, + 3d,h_2 i=1,,.,,N-1 (A-2)
i+l i ii it
C. = C, + 3d.h_ i = l.o.o,N-l (A-3)
i+l i i1
34, -d ) = pl( )/52 i=1 N-1 {A-4)

i1 T PR TED PE e BT

- _ C =1 . - . -
where h.l xw1 xi, i yeeeyN-1 and g; g(xi) Obtaining di from

(A-3), bi from (A-1) and substituting these two values in (A-2) and

(A-4) gives
= - A-5
<, (ci+1 ci)/(3hi) ( )
2
b. ={a, ,-a,)/h, - ch -dh (A-6)
i i+l i i il ii
1 ( 1 *_l_) +_L _hi+l +Z(hi+1+hi>c
B Y42 " \h L Th /4l TR 2T T3 St 3 i+l
i+l i+l i i
h,
+ = c, (A-T7)
3 i

1 11 1 2
F:l Ci42 (m’“f) %4 *B_i' c; = pla;-g)/b . (A-8)
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Using vector space notation, Fgs, (A-7) and (A-8) can be written as
Ie =Qa {A-9)

-2
pD (g-3) (A-10)

L8]

¢

t t
11 , & = [al....,a ) I is a positive de-

Wht‘rcg=[c2....,(‘ NA

N

finite tridiagonal matrix of order N-2 with elements

h'+l+h‘ i+1
= Z —‘——X-> t = t =
i ( 3 RS | i+, 3

and Q is a N x (N-2) tridiagonal matrix with elements

1 1 1 1
i+l “h, 0 Fisl,i4l 0 Th . T h %42, i41 T, :
i i+l i i+l
Premultiplying both sides of Eq. (A-10) by gtBZ
t 2 t t
a'p’gc = pQ'g-pQa (A-11)
t
and substituting Q a from (A-9) into (A-11) gives
t. 2 ‘ t
QDQ+plc = pQE - (A-12)

c = p@'p’0 +p1) Q% . (A-14)

a=g-p DQc (A-14)
Substituting (A-13) in (A-14) gives
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2 -1t
2 = g-n'o@piarpn Q.

Since { = a, the filter is given as in Eq. (5.19),

103




APPENDIX B

MATRIX IDENTITY

Lemma: For any nonsingular matrices B and C, the following matrix

identity

-1 - -1
is valid for any matrix A if (C +A B A) and (A C A+B) exist,

Proof: Assuming an auxiliary matrix D of the form

1

D=clvap Al

(B-1)

|

-1
and premultiplying both sides of Eq. (B-1)by D  gives

-1 -1 -1 -1t
1=DC +D AB A, (B-2)

Postmultiplying (B-2) by C, the equation

-1 -1
C=D +D

Lyt (B-3)

>

E..

>

is obtained, and this is rewritten as

-1 -1 -
D =C-D AB

1 ¢t

>

C . (B-4)
Postmultiplying (B-3) by A gives

CA =D A+D AB A'C:
1

=D AB (B+ACA). (B-5)




————

-t

1
Since the inverse of B + A C A exists, D AB is obtained as

D AB = CAB+ACA) (B-6)

-1 -1
D! = c-cAB+ACA AT (B-7)
or from (B-1)
-1 -1 -1 t -1
' +aBTA)T = C-CAB+ACA AT, (B-9)
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